Search by properties

This commit is contained in:
marc
2025-05-04 22:10:10 +02:00
parent 4911935cdf
commit 47d18400c3
13 changed files with 245 additions and 68 deletions

View File

@@ -1,17 +1,21 @@
import time
from collections.abc import Iterable, Iterator
from sqlite3 import Connection
from typing import Callable
from typing import Callable, TypeVar
import Levenshtein
from folkugat_web.config import search as config
from folkugat_web.dal.sql import get_connection
from folkugat_web.dal.sql.temes import properties as properties_dal
from folkugat_web.dal.sql.temes import query as temes_q
from folkugat_web.log import logger
from folkugat_web.model import search as search_model
from folkugat_web.model import temes as model
from folkugat_web.services.temes import properties as properties_service
from folkugat_web.utils import FnChain
T = TypeVar("T")
def get_query_word_similarity(query_word: str, text_ngrams: search_model.NGrams) -> search_model.SearchMatch:
n = len(query_word)
@@ -34,39 +38,41 @@ def get_query_similarity(query: str, ngrams: search_model.NGrams) -> search_mode
return search_model.SearchMatch.combine_matches(word_matches)
def _build_results_fn(query: str) -> Callable[[Iterable[tuple[int, search_model.NGrams]]],
Iterator[search_model.QueryResult]]:
def build_result(entry: tuple[int, search_model.NGrams]) -> search_model.QueryResult:
def _build_results_fn(query: str) -> Callable[[Iterable[tuple[T, search_model.NGrams]]],
Iterator[search_model.QueryResult[T]]]:
def build_result(entry: tuple[T, search_model.NGrams]) -> search_model.QueryResult[T]:
if len(query) == 0:
return search_model.QueryResult(
id=entry[0],
result=entry[0],
distance=0,
ngram="",
)
match = get_query_similarity(query, entry[1])
return search_model.QueryResult(
id=entry[0],
result=entry[0],
distance=match.distance,
ngram=match.ngram,
)
def build_results(entries: Iterable[tuple[int, search_model.NGrams]]) -> Iterator[search_model.QueryResult]:
def build_results(entries: Iterable[tuple[T, search_model.NGrams]]) -> Iterator[search_model.QueryResult[T]]:
return map(build_result, entries)
return build_results
def _filter_distance(qrs: Iterable[search_model.QueryResult]) -> Iterator[search_model.QueryResult]:
def _filter_distance(qrs: Iterable[search_model.QueryResult[T]]) -> Iterator[search_model.QueryResult[T]]:
return filter(lambda qr: qr.distance <= config.SEARCH_DISTANCE_THRESHOLD, qrs)
def _sort_by_distance(qrs: Iterable[search_model.QueryResult]) -> list[search_model.QueryResult]:
def _sort_by_distance(qrs: Iterable[search_model.QueryResult[T]]) -> list[search_model.QueryResult[T]]:
return sorted(qrs, key=lambda qr: qr.distance)
def _query_results_to_temes(con: Connection) -> Callable[[Iterable[search_model.QueryResult]], Iterator[model.Tema]]:
def fetch_temes(qrs: Iterable[search_model.QueryResult]) -> Iterator[model.Tema]:
return filter(None, map(lambda qr: temes_q.get_tema_by_id(tema_id=qr.id, con=con), qrs))
def _query_results_to_temes(
con: Connection
) -> Callable[[Iterable[search_model.QueryResult[int]]], Iterator[model.Tema]]:
def fetch_temes(qrs: Iterable[search_model.QueryResult[int]]) -> Iterator[model.Tema]:
return filter(None, map(lambda qr: temes_q.get_tema_by_id(tema_id=qr.result, con=con), qrs))
return fetch_temes
@@ -76,13 +82,35 @@ def _filter_hidden(hidden: bool) -> Callable[[Iterable[model.Tema]], Iterator[mo
return filter_hidden
def _apply_limit_offset(limit: int, offset: int) -> Callable[[Iterable[model.Tema]], list[model.Tema]]:
def apply_limit_offset(temes: Iterable[model.Tema]) -> list[model.Tema]:
def _filter_properties(properties: list[str]) -> Callable[[Iterable[model.Tema]], Iterator[model.Tema]]:
properties_set = set(prop.lower() for prop in properties)
def has_properties(tema: model.Tema) -> bool:
tema_properties = {prop.value.lower() for prop in tema.properties}
return all(prop in tema_properties for prop in properties_set)
def filter_properties(temes: Iterable[model.Tema]) -> Iterator[model.Tema]:
return filter(has_properties, temes)
return filter_properties
def _apply_limit_offset(limit: int, offset: int) -> Callable[[Iterable[T]], list[T]]:
def apply_limit_offset(temes: Iterable[T]) -> list[T]:
return list(temes)[offset:offset + limit]
return apply_limit_offset
def busca_temes(query: str, hidden: bool = False, limit: int = 10, offset: int = 0) -> list[model.Tema]:
def busca_temes(
query: str,
properties: list[str],
hidden: bool = False,
limit: int = 10,
offset: int = 0,
) -> list[model.Tema]:
"""
This function adds properties to Tema
"""
t0 = time.time()
with get_connection() as con:
result = (
@@ -92,7 +120,34 @@ def busca_temes(query: str, hidden: bool = False, limit: int = 10, offset: int =
_sort_by_distance |
_query_results_to_temes(con) |
_filter_hidden(hidden) |
properties_service.add_properties_to_temes |
_filter_properties(properties) |
_apply_limit_offset(limit=limit, offset=offset)
).result()
logger.info(f"Search time: { int((time.time() - t0) * 1000) } ms")
logger.info(f"Temes search time: { int((time.time() - t0) * 1000) } ms")
return result
def _extract_properties(query_results: list[search_model.QueryResult[str]]) -> list[str]:
return [qr.result for qr in query_results]
def busca_properties(
query: str,
limit: int = 10,
offset: int = 0,
) -> list[str]:
if not query:
return []
t0 = time.time()
with get_connection() as con:
result = (
FnChain.transform(properties_dal.get_property_value_to_ngrams(con).items()) |
_build_results_fn(query) |
_filter_distance |
_sort_by_distance |
_apply_limit_offset(limit=limit, offset=offset) |
_extract_properties
).result()
logger.info(f"Properties search time: { int((time.time() - t0) * 1000) } ms")
return result