Tune editor
This commit is contained in:
@@ -1,4 +1,7 @@
|
||||
import functools
|
||||
import time
|
||||
import typing
|
||||
from collections.abc import Callable, Iterable, Iterator
|
||||
|
||||
import Levenshtein
|
||||
from folkugat_web.config import search as config
|
||||
@@ -18,9 +21,10 @@ def get_query_word_similarity(query_word: str, text_ngrams: model.NGrams) -> sea
|
||||
candidate_ngrams = ((m, ngram)
|
||||
for m, ngrams in map(lambda i: (i, text_ngrams.get(i, [])), ns)
|
||||
for ngram in ngrams)
|
||||
return min(search_model.SearchMatch(distance=Levenshtein.distance(query_word, ngram)/m,
|
||||
ngram=ngram)
|
||||
for m, ngram in candidate_ngrams)
|
||||
return min((search_model.SearchMatch(distance=Levenshtein.distance(query_word, ngram)/m,
|
||||
ngram=ngram)
|
||||
for m, ngram in candidate_ngrams),
|
||||
default=search_model.SearchMatch(distance=float("inf"), ngram=""))
|
||||
|
||||
|
||||
def get_query_similarity(query: str, ngrams: model.NGrams) -> search_model.SearchMatch:
|
||||
@@ -44,14 +48,24 @@ def build_result(query: str, entry: tuple[int, model.NGrams]) -> search_model.Qu
|
||||
)
|
||||
|
||||
|
||||
def busca_temes(query: str) -> list[model.Tema]:
|
||||
T = typing.TypeVar("T")
|
||||
|
||||
|
||||
def _thread(it: Iterable[T], *funcs: Callable[[Iterable], Iterable]) -> Iterable:
|
||||
return functools.reduce(lambda i, fn: fn(i), funcs, it)
|
||||
|
||||
|
||||
def busca_temes(query: str, hidden: bool = False, limit: int = 20, offset: int = 0) -> list[model.Tema]:
|
||||
t0 = time.time()
|
||||
with get_connection() as con:
|
||||
tema_id_to_ngrams = temes_q.get_tema_id_to_ngrams(con)
|
||||
search_results = (build_result(query, entry) for entry in tema_id_to_ngrams.items())
|
||||
filtered_results = filter(lambda qr: qr.distance <= config.SEARCH_DISTANCE_THRESHOLD, search_results)
|
||||
# filtered_results = filter(lambda qr: True, search_results)
|
||||
sorted_results = sorted(filtered_results, key=lambda qr: qr.distance)
|
||||
sorted_temes = list(filter(None, map(lambda qr: temes_q.get_tema_by_id(qr.id, con), sorted_results)))
|
||||
result = _thread(
|
||||
temes_q.get_tema_id_to_ngrams(con).items(),
|
||||
lambda tema_id_to_ngrams: (build_result(query, entry) for entry in tema_id_to_ngrams),
|
||||
lambda results: filter(lambda qr: qr.distance <= config.SEARCH_DISTANCE_THRESHOLD, results),
|
||||
lambda results: sorted(results, key=lambda qr: qr.distance),
|
||||
lambda results: filter(None, map(lambda qr: temes_q.get_tema_by_id(qr.id, con), results)),
|
||||
lambda results: filter(lambda t: hidden or not t.hidden, results),
|
||||
)
|
||||
result = list(result)[offset:offset + limit]
|
||||
logger.info(f"Search time: { int((time.time() - t0) * 1000) } ms")
|
||||
return sorted_temes
|
||||
return result
|
||||
|
||||
Reference in New Issue
Block a user