Migrated links, lyrics and properties
This commit is contained in:
@@ -1,7 +1,7 @@
|
||||
import functools
|
||||
import time
|
||||
import typing
|
||||
from collections.abc import Callable, Iterable
|
||||
from collections.abc import Iterable, Iterator
|
||||
from sqlite3 import Connection
|
||||
from typing import Callable
|
||||
|
||||
import Levenshtein
|
||||
from folkugat_web.config import search as config
|
||||
@@ -10,6 +10,7 @@ from folkugat_web.dal.sql.temes import query as temes_q
|
||||
from folkugat_web.log import logger
|
||||
from folkugat_web.model import search as search_model
|
||||
from folkugat_web.model import temes as model
|
||||
from folkugat_web.utils import FnChain
|
||||
|
||||
|
||||
def get_query_word_similarity(query_word: str, text_ngrams: search_model.NGrams) -> search_model.SearchMatch:
|
||||
@@ -33,40 +34,66 @@ def get_query_similarity(query: str, ngrams: search_model.NGrams) -> search_mode
|
||||
return search_model.SearchMatch.combine_matches(word_matches)
|
||||
|
||||
|
||||
def build_result(query: str, entry: tuple[int, search_model.NGrams]) -> search_model.QueryResult:
|
||||
if len(query) == 0:
|
||||
def _build_results_fn(query: str) -> Callable[[Iterable[tuple[int, search_model.NGrams]]],
|
||||
Iterator[search_model.QueryResult]]:
|
||||
def build_result(entry: tuple[int, search_model.NGrams]) -> search_model.QueryResult:
|
||||
if len(query) == 0:
|
||||
return search_model.QueryResult(
|
||||
id=entry[0],
|
||||
distance=0,
|
||||
ngram="",
|
||||
)
|
||||
match = get_query_similarity(query, entry[1])
|
||||
return search_model.QueryResult(
|
||||
id=entry[0],
|
||||
distance=0,
|
||||
ngram="",
|
||||
distance=match.distance,
|
||||
ngram=match.ngram,
|
||||
)
|
||||
match = get_query_similarity(query, entry[1])
|
||||
return search_model.QueryResult(
|
||||
id=entry[0],
|
||||
distance=match.distance,
|
||||
ngram=match.ngram,
|
||||
)
|
||||
|
||||
def build_results(entries: Iterable[tuple[int, search_model.NGrams]]) -> Iterator[search_model.QueryResult]:
|
||||
return map(build_result, entries)
|
||||
|
||||
return build_results
|
||||
|
||||
|
||||
T = typing.TypeVar("T")
|
||||
def _filter_distance(qrs: Iterable[search_model.QueryResult]) -> Iterator[search_model.QueryResult]:
|
||||
return filter(lambda qr: qr.distance <= config.SEARCH_DISTANCE_THRESHOLD, qrs)
|
||||
|
||||
|
||||
@typing.no_type_check
|
||||
def _thread(it: Iterable[T], *funcs: Callable[[Iterable], Iterable]) -> Iterable:
|
||||
return functools.reduce(lambda i, fn: fn(i), funcs, it)
|
||||
def _sort_by_distance(qrs: Iterable[search_model.QueryResult]) -> list[search_model.QueryResult]:
|
||||
return sorted(qrs, key=lambda qr: qr.distance)
|
||||
|
||||
|
||||
def _query_results_to_temes(con: Connection) -> Callable[[Iterable[search_model.QueryResult]], Iterator[model.Tema]]:
|
||||
def fetch_temes(qrs: Iterable[search_model.QueryResult]) -> Iterator[model.Tema]:
|
||||
return filter(None, map(lambda qr: temes_q.get_tema_by_id(tema_id=qr.id, con=con), qrs))
|
||||
return fetch_temes
|
||||
|
||||
|
||||
def _filter_hidden(hidden: bool) -> Callable[[Iterable[model.Tema]], Iterator[model.Tema]]:
|
||||
def filter_hidden(temes: Iterable[model.Tema]) -> Iterator[model.Tema]:
|
||||
return filter(lambda t: hidden or not t.hidden, temes)
|
||||
return filter_hidden
|
||||
|
||||
|
||||
def _apply_limit_offset(limit: int, offset: int) -> Callable[[Iterable[model.Tema]], list[model.Tema]]:
|
||||
def apply_limit_offset(temes: Iterable[model.Tema]) -> list[model.Tema]:
|
||||
return list(temes)[offset:offset + limit]
|
||||
return apply_limit_offset
|
||||
|
||||
|
||||
def busca_temes(query: str, hidden: bool = False, limit: int = 10, offset: int = 0) -> list[model.Tema]:
|
||||
t0 = time.time()
|
||||
|
||||
with get_connection() as con:
|
||||
result = _thread(
|
||||
temes_q.get_tema_id_to_ngrams(con).items(),
|
||||
lambda tema_id_to_ngrams: (build_result(query, entry) for entry in tema_id_to_ngrams),
|
||||
lambda results: filter(lambda qr: qr.distance <= config.SEARCH_DISTANCE_THRESHOLD, results),
|
||||
lambda results: sorted(results, key=lambda qr: qr.distance),
|
||||
lambda results: filter(None, map(lambda qr: temes_q.get_tema_by_id(qr.id, con), results)),
|
||||
lambda results: filter(lambda t: hidden or not t.hidden, results),
|
||||
)
|
||||
result = list(result)[offset:offset + limit]
|
||||
result = (
|
||||
FnChain.transform(temes_q.get_tema_id_to_ngrams(con).items()) |
|
||||
_build_results_fn(query) |
|
||||
_filter_distance |
|
||||
_sort_by_distance |
|
||||
_query_results_to_temes(con) |
|
||||
_filter_hidden(hidden) |
|
||||
_apply_limit_offset(limit=limit, offset=offset)
|
||||
).result()
|
||||
logger.info(f"Search time: { int((time.time() - t0) * 1000) } ms")
|
||||
return result
|
||||
|
||||
Reference in New Issue
Block a user