64 lines
2.0 KiB
Python
64 lines
2.0 KiB
Python
from collections.abc import Iterable
|
|
|
|
from folkugat_web.dal.sql import Connection, get_connection
|
|
from folkugat_web.model import search as search_model
|
|
from folkugat_web.model import temes as model
|
|
|
|
from . import conversion
|
|
|
|
_tema_id_to_ngrams_cache: dict[int, search_model.NGrams] | None = None
|
|
|
|
|
|
def get_tema_by_id(tema_id: int, con: Connection | None = None) -> model.Tema | None:
|
|
query = """
|
|
SELECT
|
|
id, title, alternatives, creation_date, modification_date, hidden
|
|
FROM temes
|
|
WHERE id = :id
|
|
"""
|
|
data = dict(id=tema_id)
|
|
with get_connection(con) as con:
|
|
cur = con.cursor()
|
|
_ = cur.execute(query, data)
|
|
row: conversion.TemaRowTuple = cur.fetchone()
|
|
return conversion.row_to_tema(row) if row else None
|
|
|
|
|
|
def get_temes_by_ids(tema_ids: list[int], con: Connection | None = None) -> list[model.Tema]:
|
|
placeholders = ", ".join(["?" for _ in tema_ids])
|
|
query = f"""
|
|
SELECT
|
|
id, title, alternatives, creation_date, modification_date, hidden
|
|
FROM temes
|
|
WHERE id IN ({placeholders})
|
|
"""
|
|
with get_connection(con) as con:
|
|
cur = con.cursor()
|
|
_ = cur.execute(query, tema_ids)
|
|
rows: Iterable[conversion.TemaRowTuple] = cur.fetchall()
|
|
return list(map(conversion.row_to_tema, rows))
|
|
|
|
|
|
def evict_tema_id_to_ngrams_cache():
|
|
global _tema_id_to_ngrams_cache
|
|
_tema_id_to_ngrams_cache = None
|
|
|
|
|
|
def get_tema_id_to_ngrams(con: Connection | None = None) -> dict[int, search_model.NGrams]:
|
|
global _tema_id_to_ngrams_cache
|
|
if _tema_id_to_ngrams_cache is None:
|
|
_tema_id_to_ngrams_cache = _get_tema_id_to_ngrams(con)
|
|
return _tema_id_to_ngrams_cache
|
|
|
|
|
|
def _get_tema_id_to_ngrams(con: Connection | None = None) -> dict[int, search_model.NGrams]:
|
|
query = """
|
|
SELECT id, ngrams
|
|
FROM temes
|
|
"""
|
|
with get_connection(con) as con:
|
|
cur = con.cursor()
|
|
_ = cur.execute(query)
|
|
rows: list[tuple[int, str]] = cur.fetchall()
|
|
return {id_: conversion.cell_to_ngrams(ng) for id_, ng in rows}
|